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both target recognition and target intelligence using natural resonances are

presented. Also in Section 4, two key problems with Prony's method are

identified. Methods for effectively treating these problems are presented

which allow Prony's method to be effective at high noise levels.
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1.0 INTRODUCTION

1.1 BACKGROUND

In analyzing and characterizing experimental or numerical electro-

magnetic response data, one generally desires to extract parameters that

can be related to physical characteristics of the system being studied.

One set of physically related parameters is the complex natural reson-

ances of the system and their related coefficients. Indeed these reson-

ances have been recognized as important for some time. Recently the. con-

cept of electromagnetic resonances has been applied to problems of p,ýr-

ticular interest to the Navy.

In 1971 Baum [l] developed the formalism known as the Singularity

Expansion Method (SEM) which enables one to write any electromagnetic

response of a system as an expansion of the complex resonances or poles

and residues of that system. Baum developed this formalism for the I
electromagnetic pulse (EMP) cozmmunity so that the external current dis-
tribution on aircraft and ground support systems could be characterized

concisely. Lt was not until the singularity expansion method came into

being that it was possible to determine the modal resonances and the

excitation coefficients of each mode for a structure with an arbitrary

incident excitation.

In 1974 Mains and Moffatt [2] introduced the concept of using the

complex natural resonances of a body as a basis for target recognition.

They made use of the fact that a few natural resonances of a body are

adequate to distinguish the body within a finite collection of bodies.

They also made use of the knowledge that the natural resonances of a

body, as manifested in a scattered waveform, are aspect independent. The

identification proced.ire which was used was to first obtain a set of

multi-frequency radar scattering data from an unknown target. A pre-

diction-correlator type of processing was then applied to select the

real target from a catalog of candidate targets and their resonances.

1-1F



In both Baum's and Mains and Moffatt's early work the resonances

were obtained from a set of equations which characterized the electro-

magnetic response of the body, much as a circuit theorist finds his

resonances by solving a differential equation. Many shapes have been

numerically analyzed to date to obtain their characteristic resonances.

However for complex shapes and configurations, it is of great interest to

be able to obtain the resonances from experimental data. In particular

obtaining the resonance parameters from transient response data from EMP

simulators and transient radar ranges is of keen interest to the military

community.

S.II Spectral electromagnetic response data usually lends itself to the_.

visual identification of these natural frequencies. The damping constants

cannot be obtained as easily, however, and often are calculated from es-

timates of the quality factor (Q). Similarly, temporal response data
generally allows one to visually determine the dominant natural frequency

in a response. If enough data are present, the damping constant of this

dominant frequency can also be determined. However, temporal data are

usually Fourier transformed to the frequency domain so that the higher

order modes can be identified visually. Visual identification of the

natural resonances of a system is not ideal by any means, particularly if

the system has many low Q modes. Hence a numerical resonance extraction

procedure is very much in demand.

About seven years ago Prony's algorithm [3] was applied for the first

time to the problem of numerically extracting the natural resonances from

transient electromagnetics response data. The first application of Prony's

method was to the numerically generated transient current on a thin dipole.

The results, which were reported at the 1974 USNC/URSI meeting [4] by

Mitttra and Van Blaricum gave a set of resonances (poles) which compared

very closely with the first ten even modes previously calculated by

Tesche [5]. As a result of this initial demenstration, several researcn-

ers began studying Prony's method to determine its utility for analyzing !

several kinds of transient data and to look for solutions to some of the

1-2



problems inherent in the process. In addition, Brittingham, Miller and
Willows [6] demonstrated that a procedure parallel to the time domain

Prony's method could be applied to frequency domain data.

Some of the initial questions which were asked about Prony's method,

arl which are in part still begin studied, were:

1. Will Prony's method work if multiple poles are present?

2. How does one determine a priori the order of the system?
That is, how many poles are contained in the response data?

3. What effects do noisy data have on the Prony algorithm?

4. How do we insu;.e or know the accuracy of the poles returned?

ThLai questions were all addressed to some extent in Van Blaricum's

"_z.ertat [7]. It was found that Prony's method would work for the

c- ;. . mu.tLT4e roles without any change in the pole searching algorithm.

I. thods wet discovered by Ihich the order of the system could be
aet-r, L-i,. There• aethods are the Householder orthogonalization proce-
mire anJ, che Ej~genvalue method. Examples of these methods can be found

in Vin Blaricum's thesis [7] and appear in the special EMP issue of AP-S

18]. A preliminary scudy of the effects of noise on the pole extraction
alkrithm and the order determination algorithms was presented in [7] and

[81 also. However the problem of noise and Prony's method is a very
complex one which has not been, even at this time, completely answered.
Several alternatives to Prony's method have been suggested and investi-
gated with the hope of finding a cure for all noise problems. Among

these alternatives are variations on Prony's method [9-10]; the pencil-
of-functions method [11] which is presented in Appendix D; iterative

generalized least squares presented in Appendix A; column Prony's method,

Appendix F; the adaptive method, Appendix C; and Evan t s and Fischl's

method, Appendix G.

To understand the different procedures for pole extraction and the

difficulties involved it is necessary to discuss the main elements of the

,.. - .. 1-3
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existing procedures. The process of extracting the natural resonances

and their associated residues from a transient signal has four main steps

as shown in Figure 11,.

The first step is the determination of the order of the system. At

this step one decides how many poles the system response function has so

-4that the proper model order can be obtained. It has been found, through

',i a combination of parameter studies and trial and error, that if the order

of the system is underestimated then the extracted poles will deviate sub-

stantially from the true poles. Similarly if the order of the system is

overdetermined, the algorithm produces extraneous poles. The presence

of the extraneous poles causes the residues of the true poles to be

"inaccurate and also results in unnecessary computation time. The presence

of noise in data makes the determination of the system order a very complex

"problem. Up to this time many methods have been used to determine the

order but they either break down when noise is present or they are

dependent on trial and error or the intervention of the user. For analysis

of massive amounts of data, as in the case of EMP data, or for radar target

identification a totally automated method is a must. In Section 3 (Volume
I) of this report, a procedurR capable of automatically determining the

proper. order without any knowledge of the noise level is presented.

Once the order of the system has been determined the coefficients

of the linear predictor equation or Prony's difference equation must be
solved. The degree of difficulty of this step depends on the noise level

in the data and on the proper determination of the order of the system.

In Section 4, certain factors which greatly effect the accuracy of the

coefficients are discussed.

Once the difference equation coefficients ate obtainLd, the roots

of anN order polynomial, N being the system order, must be found.

Many root finding routines exist but Muller's method [13) appears to be

I1-4
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'p the optimal method. While this is a key step in the procedure it is

totally dependent on the accuracy of the coefficients which were obtained

in the pre-ious step.

The final step 13 the solution of the residues which are associated

with the system poles or singularities. These residues are obtained by

solving a simple linear matrix equation. In many problems, such as

target identification, the residues are not required and hence this is

certainly not a critical step.

k 1.2 RECENT WORK IN RESONANCE ESTIMATION

Kulp [14] has recently studied the effect of sampling rate on the

accuracy of Prony's method. The sampling rate, we have found, is one of

two factors that determine the performance of Prony's method with noisy

data. The other factor is statistical bias in the estimates. If boch

of these problems are treated, Prony's method performs admirably well

with noisy data.-

Cures for ch. bias problem and the problem of extraneous resonances

ha,,e been proposed by Henderson(15]. The technique involves the use of

eigenvalue decomposition to construct the coefficients of Prony's

difference equation. Although we cannot prove, as yet, that the use of

eigenvalue decomposition allows bias-free estimation of the coefficients,

we have seen indications that this is the case. In Section 2, Volume I

of this report, indications that lead us to this bias-free remark are
described.

It is these two recent works plus order selection techniques developed

by ETI that set the stage for testing of the automatic resonance extrac-

tion procedures in Phase II of the current contract. I

i--6H -



1.3 OBJECTIVES AND CONTRIBUTIONS OF THLE PRESENT WORK

Three major objectives were set forth at the beginning of the

current contract:

1. To review and summarize the state-of-the-art of procedures

for extracting resonances frum transient data which include

Prony's method, adaptations of Prony' s method and other

techniques of system identification and parameter estimation.

2. To investigate methods for automatically determining the

proper order of a system represented by a noisy set of data

and the limitations of the procedures for doing s0.

3. To investigate methods for automatically extracting the

the proper order has been established.

At the present time these objectives have been fully satisfied. Our

present understanding of the resonance extraction problem will enable

us to construct and test practical automatic procedures for resonance

extraction in the second phase of the current contract. In looking for

automated methods, several other important issues such as biased

estimates, iterative versus one shot processes, and pattern recognition,

to name a few, were investigated. Many possible techniques were

examined in a aearch for automated methods. These techniques are

summarized in appendix form in Volume II of this report.

1.4 SOME REMOTE SENSING APPLICATIONS OF RESONANCE EXTRACTION

The ideal end product of this type of research is an automatic real

time technique which will take noisy transient signals and estimate the

complex resonances of the structure and the errors in these estimates.

In studying existing techniques with this one end product in mind it

became clear to us that the method developed is dependent on the specific

uses intended.A
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The three major remote sensing applications of the complex resonances

are target recognition, target intelligence, and target camouflage and de-

coying. Target recognition, as we define it, assumes that previous know- 4

ledge of the targets in question is known. Target recog:uition is also

assumed to be a real-time or a near real-time process. The poles ex-

tracted from the measured target 's signature can be compared to a target

pole catalog for identification. While this requires work in building

the initial library it makes the actual pole extraction procedures less

complicated (fortunately since they have to be real time) because the

true poles will not have to be separated from the noise poles.

4 'I Target intelligence assumes that we are trying to discover the

shape and type of vehicle we are seeing having never seen it before.

~~1Hence this targetz will. not be in a library or catalog. This requires
that the true system poles be separable from the noise poles. In addition

the relation between pole patterns or locations and the target's physical

~,* ,~ characteristics must be known. The process, however, does not have to 1
be real-time and can usually have human input.

Target camouflage and decoying are potential techniques based on -

knowing the relationships between pole patterns and physical character-

istics. Knowing these relationships a target can be given apparent (to

the radar) new characteristics by modifying its measured pole pattern.

Hence one could make a cruise missile either apparently disappear by

overdamping its resonant return or make it look like another vehicle by

appropriately moving the resonances. Target camouflage is much like

target intellegence in its requirements. The main requirement is develop-

ing the knowledge of the relationship among the poles and physical config-

uration.

Before much more work is done in this general theoretical area ofA

resonance extraction from transient signals it will be necessary to veryIn accurately define the desired type of system application to which the
methods will be applied. In Section 4, Volume I of this report, we de-

fine tentative and very rough forms of the procedures to be applied to

1-8
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the target recognition and target intelligence problems. These rough

forms will gain further definition in the second phase of the current

contract.

1.5 OUTLINE OF THIS REPORT

Volume I presents major results and conclusions of the research.

Section 2 addresses the question of what the best methods of estimating I
the resonances for this application are. Among the estimation procedures

studied are the conventional technique of using an inhomogeneous set of

equations, eigenvalue decomposition tecnniques, Jain's method, and iter-

ative techniques. Section 3 studies procedures for selecting the proper

order and eliminating extraneous resonances. One major and original

contribution by ETI is presented in Section 3, namely, the maximum likelihood

procedure for order selection. This procedure is capable of automatically I
determining the proper order without any prior knowledge of the noise

level. Also, in Section 3, Henderson's procedure for eliminating extran-

eous resonances is tested by numurical example. The procedures presented

in Section 3 allow an efficient, automatic procedure for order aelection

and resonance estimation to be constructed by using eigenvalue decomposition

of the data. Section 4 discusses various practical problems that must be

addressed before resouance extraction procedures for a practical radar

target recognition system can be designed. This section serves to relate

the concepts in Sections 2 and 3 to the application under consideration

in the current contract. Section 4 addresses the basic problem of what

is the best sampling rate and period of observation for the purposes of

resonance extraction. Possible procedures and systems for both target

recognition and target intelligence using natural resonances are presented.

Also in Section 4, two key problems with Prony's method are identified.

Methods for effectively treating these problems are presented which allow

Prony's method to be effective at high noise levels.

1-9



Volume II consists of appendices which present the details of
several techniques that have been investigated during this contract.
Volume I makes references to Volume II for the details of specific

procedures.

Volume III contains a large bibliography of Prony's method. Also
in Volume III is a translation of Prony's original paper.
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2.0 COMPARISON OF PROCEDURES F'R RESONANCE ESTIMATION

2.1 DEFINITION OF TFE RESONANCE EXTRACTION PROBLEM

In this report we consider the problem of estimating the resonances

of a linear, time-invariant, physical system, such as an electromagnetic

scatterer, from the measured time-domain system response to the measured

time-domain excitation. We assume that a distributed physical system

such as a scatterer can be adequately modeled by a single-input, single-

output linear system where the input may be the incident electric field

!Lime history and the output is the reflected electric far-field time
history.

In general., both the excitation and response are required to estimate

the resonances of the system. However, for the first part of this section
we consider the case where the excitation is a delta function so that the

impluse response can be observed. In practical aituatione the impulse
response can usually be obtained by deconvolution. (Appendix H presents

one deconvolution technique.) The measured impulse response can be

expressed as

k k

qi w i + ei" A exp (sj int) +ei- S A z + ei (1)
j-l j-1

for i-O,l...,N where z = exp(sjt) are the resonances or poles in terms
a j I

of z-transform variable, the s are the poles in terms of the Laplace-
transform variable, the Aj are termed "residues", qi denotes the i th sample,

N is the number of samples, and /t is the time increment between sucessives

samples. Equal increments are assumed.

2-I
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p iDistributed systems normally have an infinite number of modes, i.e.,

k-'c. In practice, the number of poles that are modeled, n, need not be

infinite but only sufficiently large to yield an adequate approximation to

the measured response. The "best" value of n is strongly dependent on the

number of dominant resonances and the noise level.
hi,

* I Many procedures are available for estimating the resonances. But,

for the first part of this section, we consider only the class of procedures

based on Prony's difference equation which has the form

-w " mO i'O'l,'"m" •(2)

where w denotes the unocrrupted value of q If wi is replaced by q, the

in

J equation becomes

(3)nOt qj~ " d 'i-o1..m

where d i is, in general, nonzero, and is termed the "equation error". In

matrix fnrm (2) becomes Wx-O and (3) becomes Qx-d

q0  q I qn w W0 "'" wn

where Qi q ( 2  ... q+ and W W w2  n+1

Swm wm+. W+n LI
T

are tho (A x N)-dimtensional data mptrices .x t [o ,., is the N-

dimensional parameter vector, and d - [d ,di .... id is the M-dimensional

equation error vector. For convenience we use M-m+1 and N-n+l.

2-2



The central problem of all noniterative resonance extraction procedures

is choosing the parameter vector to minimize the magnitude of the equation

error. Various procedures for minimizing d are available. In this section,

we examine some of these procedures and isolate one procedure that is the

most appropriate for resonance extraction.

Once x has been adjusted to minimize d, the roots z of the equation

A n

cz - 0 (4)

are estimates of the resonances in the z-plane and define estimates of the

s-plane resonances through so - Znzo/At, for j-l,...,n where, for the

moment, n-k is assumed. Estimates of the residues can be taken as the

coefficients A' that minimize the "true error" defined as

m+n n

a [q A- (z)' (5)
1-0 0

The minimizing Aj can be chosen by using a standard least-squares technique.

An important observation can'be made from (4): If the aj are all

.ultiplied by the same constant, the roots, z' , are unchanged. From this
observation it is concluded that the magnitude of the x vector is irrelevant
in estimating the resonances. Only the direction of x is important.

In this section we assume that the true number of poles,k, is finite
and known and that n-k. The section on order selection procedures discusses

what courses of action are available when k is not known and possibly infinite.
The presence of measurement error produces a data matrix of rank N while the
true rank without measurement error is k. Measurement error, then, greatly

complicaces estimation of the true order.
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22.2 QUADRATIC ERROR MINIMIZATION

One procedure for minimizing the equation error is straight minimization

of its norm, Jdfl, or, equivalently, the minimization of the square of the

norm, dTd. We refer to dTd as quadratic error (QE). Since d-Qx, the

trivial solution x-O will always provide the minimum QE. Other values of

4 x can provide this same minimum value only if the rank of Q is less than N

which occurs only in the absence of measurement error. Nevertheless, we may! • proceed in the usual fashion to derive a set of normal equations by equatIng

the derivative of dTd with respect to x to zero:'
,ii

*~IV (d Td) - 2QTQ - 0

'I which implies that the value of x that satisfies QTQ x-0 can furnish a minimum.
QT

Unfortunately, when measurement error is present Q Q is nonsingular, and

hence, only the trivial solution, x-O, exists as we noted above. The trivial

solution is not desirable since the zero vector contains none of the

directional information that is necessary to estimate the resonances.

One way out of this dilemma is to fix one element of the x vector at a

nonzero value and adjust the remaining elements to minimize dTd. Suppose

we let a -i. Then Qx-d can be written Q;+ý-d where X [t% [tl, n-

qo q " qn
ql1 q2 q' qn

qm qm+l ... qm+n-i

and q-[qn qn+l,...qm+n]T. The deriviative uf J d with respect to 1 is
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T TV~(d d) (&X- fQ + q) + q)

-T-- &T-
-2Qx + 2Q q

Equating the deriviative to zero implies that

With or without measurement error QTQ is always nonsingular, and hence, its

inverse exists. It follows that X can always be used to find a nontrivial
parameter vector. - is referred to as the reduced or inhomogeneous solutionthe inhomogeeousoequatio: soQxutQoq'I because it satisfies the inhomogeneous equation: &TQ; -QTi.

•i: The use of the inhomogeneous solution has traditionally been the

procedure for obtaining a parameter vector. We will examine this solution
procedure more closely after another procedure is introduced.

2.3 MINIMIZATION OF NORMALIZED QUADRATIC ERROR

We have seen that dTd becomes zero when xTx is zero which leads to the

problem of the trivial solution. An error criterion that does not necessarily

tend to zero when the parameter vector tends to zero is the normalized

quadratic error (NQ9) defined as dTd/xTx. The deriviative of dTd/x Tx with

respect to x is

dd -- - "dT.dxT T Tx

Sx x x x (xTx)

Equating the deriviativo to zero implies that

dT

Q TQx - - x

2-5
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This is the well-known form of an eigenvalue problem. The only values of
T

x capable of furnishing a minimum of NQE are the eigenvectors of Q Q. NQE

assumes the minimum as the lowest eigenvalue when x assumes the value of

the weakest eigenvector. We conclude that minimizing NQE effectively avoids

the trivial solution and is equivalent to using an eigenvalue technique to

find a minimizing parameter vector. The weakest eigenvector may be used to

estimate the resonances. Price (9] arrived at this result using different

but equivalent arguments.

2.4 SINGULAR VALUE/EIGENVALUE DECOMPOSITION

Another way of representing the eigenvalue onalysis of QTQ is ,the

eigenvalue decomposition (EVD) of Q TQ which can be expressed as

T T
QTQ VANV

where V is an (N x N)-dimensional orthogonal matrix whose columns are the
Teigenvectors of Q Q and A is an (N x N)-dimensional diagonal matrix whose

NT

TT

In the same way, the eigenvalue analysis of QQT can be expressed in

the EVD form:

• .QQ T U U • T

where U is an (M x M)-dimensional orthogonal matrix whose columns are the

eigenvectors of QQT and A is an (M x M)-dimensional diagonal matrix whose

elements are the eigenvalues of QQT.

A more general form of EVD for nonsquare matrices, known as singular

value decomposition [16] (SVD), effectively performs both EVD's mentioned

above. The SVD of Q is expressed as

i

2-6
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Q - USV'

where U and V are the matrixes that were previously defined and S is an

(M x N)-dimensional matrix whose diagonal elements are non-negative and

are called the singular values of Q. The singular values are related to

the eigenvalues by AN - sTs and M - SST
4N

2.5 USE OF EVD/SVD TO APPROXIMATE THE DATA MATRIX

T T
We have seen that straight minimization of d d leads to Q Q-0 which

Tfor the noisy case has only the trivial solution since Q Q is nonsingular.
1 0.1Two methods to avoid the trivial solution, fixing an element of the parameter

vector and EVD/SVD analysis, have been mevtioned. Another interpretation

of EVD/SVD analysis promotes understanding of what these methods accomplish.
T

EVD/SVD analysis can be interpreted as a method to approximate Q Q or Q

with a matrix of lower rank or, in other words, a singular matrix. When
TQ Q is replaced by a singular approximant matrix, the homogeneous equation

4 ,mentioned above has a nontrivial solution. It is shown that this nontrivial
T

K Isolution is equivalent to tne weakest eigenvector of Q Q.

T
A singular approximant of P-Q Q can be constructed by using the EVD

of QTQ as

Tt D VA VT
s NS

where ANS is the diagonal matrix constructed from AN by forcing the smallest

diagonal element or eigenvalue to zero. The eigenvector corresponding to
A

the smallest nonzero eigenvalue must satisfy P sx-O and hence, it is the

nontrivial solution to the best approximant of the homogeneous equation
TAQTQx. P is the optimal approximant to P in the sense that is the singular

s
matrix, P, that minimizes the euclidean matrix norm of P -P.

2.-7
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An identical procedure is the use of the SVD of Q to construct an

approximant of Q:

us vT

where Ss is constructed from S by forcing the smallest singular value to
A A T

zero. Since P S-Q TQ. the resulting solution is identical to the solution

obtained with EVD of Q Q.

"One important observation should be made about the approximation

This matrix is not a Hankel matrix in general. Therefore, we cannot use

this matrix to form an approximation to the original waveform.

"2.6 SUPERIORITY OF EVD/SVD TECHNIQUES FOR RESONANCE ESTIMATION

So far two methods to find a minimizing parameter vector have been

found:

1. The inhomogeneous solution

2. EVD/SVD analysisF' I
In the following we show that the directions (not just the magnitudes) of
the parameter vectors obtained using these two procedures are different,

and hence, the estimates of the resonances differ. We also show that in

one sense EVD/SVD analysis is s,-perior to the inhomogeneous solution.

Let xNQE be the weakest eigenvector of QTQ which has been scaled so

that a n-1. (Note that scaling the eigenvector does not change its direction,

and hence, the estimates of the resonances are unchanged.) Let denote
the reduced parameter vector which is formed from xnE. Then -

"--NQE + q dNQE. By taking the pseudoinverse of Q- we solve for 'NQE:

2-8
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xNQE[Q Qq~ Q QdNQE

Since the inhomogeneous solution is defined sx -[Q Q] Q q the

difference between the two estimates is

xNQE XI NQE

*. When noise is present, this difference can be shown to be, in general,

nonzero. Since a -1 for both procedures, the parameter vectors constructed

* from these reduced vectors must differ in direction in the general case

Now that the two procedures have been shown to produce different

resonance estimates, we provide an argument to show that xNQE is the

better of the two estimates because it is perturbed less than the inhomo-

geneous solution by the presence of noise in the data.

If we assume that the noise corrputing the waveform is zero-mean,
Gaussian-distributed, and uncorrelated with variance a then we can show

that [7]

M(QTQ) , wTw + IMa 2

•(QTQ) = WTW + IMo2

and (QTq) q ýTw where I denote the identity matrix of appropriate dimension

in each case, W and w are the uncorrupted matrices corresponding to Q
and q, respectively, & denotes the expectation operator, and M is the

number of rows of Q and Q.

2-9



In order to perform a completely determ.1nistic analysis of the effects

of noise on each procedure, we replace QTQ, QTQ and Qq with their expect-
ations we derived above.

•' W~ W_ ~

The EVD of wTw is denoted by WTw - V ANV • Then the EVD of
T N

.Q Q] is

" TQ] V vW[AW + IM 2 vWT

:YT~Since W and ý(QTQ) possess the same eigenvectors, we conclude that

noise has no net effect, on the average, on the eigenvectors of QTQ including

XNQE .Proof is not yet available to support the claim that the expectation
•; 'Iof the eigenvectors is uneffected by noise. However, we provide the following

geometrical argument: The eigenvectors represent the extremes of the directions

present in the data, that is, either the strongest or weakest directions are

represented by eigenvectors. A purely random noise component has no dominant
J•!i.°•'•"directions and tends to perturb the aigenvectors equally in all directions |

neighboring their unperturbed or noise-free directions. Because of the symmetry

in the perturbations, the average or expectation of the perturbed eigenvectors

should be equal to the unperturbed eigenvectors themselves.

Let XE, which is referred to as the expected inhomogeneous solution,

satisfy

~(Q ) X q)

-- 2-T- *or (•TW + I Ma X WTw (6)

We assume that the expected solution is representative of actual solutions,
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The following observations can. then be made:

1. When a-O, i.e., no noise, the expected solution reduces to the

noise-free or exact solution.

2. When the noise greatly dominates the signal we have x IE szo.

3. From 1 and 2, the expected solution is highly dependent on

the noise level.

4!

I 1 The third observation contrasts the effects of noise on the inhomogeneous

solution and on xNE

NQE

, iFrom the foregoing analysis we conclude the following:

1 x NQ and x I lead to different resonance estimates.

2. Resonance estimites from xn T are considered to be inferior to

, those from e because is expected to dioeplay a strong

dep1?Irden-.e on the noise level while "N QE is expected to remain
invariant with the noise level. In the extreme case when the

noise greatly dominates the signal x tends Lo the trivial

so.utioh: X 20.

Therefore this analysis supports the claim that the eigenvectors are

perturbed less by noise than the inhomogeneous solution. We point out that

the validity of this analysis critically~depends on the validity of the

assumption that the results for expected or average cases are representative

of results for actual cases. However, in the following numerical example,

actual cases are presented that support the conclusion that the eigenvectors

are perturbed less by noise.
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2.7 NUMERICAL EXAMPLE

Figure 2.1 depicts the waveform that is used in this numerical
example. The poles, si, and residues, AV, which define the uncorrupted
waveform are given in Table 2.1. The true number of resonances is k - 12.
The time step is At - 0.2. The waveform consists of 400 samples.

Table 2.2 displays the parameter vector obtained with the inhomogeneous
solution for the case when n-k and M-387 and for various noise levels. When
the noise becomes large all parameters except a tend toward zero. Table
2.3 displays the weakest eigenvector, XNQE, for N-13 and M-387 and for the j
"same noise levels. The parameters in this case show no tendency toward

". I zero. This example, then, supports the conclusion that the weakest eigen-
vector is effected less by noise than the parameter vector constructed

"from the inhomogeneous solution.

Appendix I presents a technique to discriminate between the true poles

and the extraneous poles for the case when n>k. This technique makes use of
the tendancy of extraneous poles to remain in the left half of the s-plane
when the waveform is reversed while the true poles are negated or "mirrored"
through the imaginary axis of the s-plane. This tendency of the extraneous
poles is closely related to the coefficients tending to zero in this example.
It follows that this behavior is not observed if the weakest eigenvector is
used to estimate the resonances. Appendix I describes in detail the reasons

behind this behavior.

2I
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Table 2.1. Resonances for uncorrupted waveform
with associated residues. Resonances
are expressed in terms of s-plane poles.

s A

_ _ _REAL IMAG. REAL IMAG.

1 -0.082 0.926 0.5 0.0

2 -0.082 -0.926 0.5 0.0

3 -0.147 2.874 0.5 0.0

4 -0.147 -2.874 0.5 0.0

5 -0.188 4.835 0.5 0.0

6 -0.188 -4.835 0.5 0.0

7 -0.220 6.800 0.5 0.0

8 -0.220 -6.800 O. 0.0

9 -0.247 8.767 0.5 0.0

10 -0.247 -8.767 0.5 0.0
L1 -0.270 10.733 0.5 0.0

12 -0.270 -10.733 0.5 0.0

r
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Table 2.2 Coefficients for Prony's difference
equation that are constructed from
the inhomogeneous solution.

j a=0.001 a 0.01 a -0.1 a 1.0

0 0.3189 -0.3082 0.1452 0.0384

11 -1.371 0.8076 -'0.0868 -0.0211
2 3.384 -1.216 0.0743 -0.0112

3 -6.193 1.442 0.0257 0.0007
4 9.357 1.251 -0.1543 -0.0393

5 -12.17 0.6396 0.2438 0.0611
6 13.91 0.3044 -0.2537 -0.0245

7 -14.08 -1.355 0.1276 -0.0607
8 12.56 2.196 0.0177 -0.0007

p 9 -9.724 -2.628 -0.3176 0.0192

10 6.294 2.450 0.4166 -0.0865
11 -3.185 -1.914 -0.7654 -0.0861

12 1.000 1.000 1.000 1.000
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Table 2.3 Coeffliients for Prony's difference
equation that are constructe4 by scaling
the weakest eigenvector of Q Q.

nwI

0.1j - .001 a - o.01 a - o.1 1. 0~ ,

S0 0.6327 0.6372 -0.6416 -0.9769

1 -2.403 -2.453 1.544 0.8649

2 5.513 5.689 -2.378 1.275

3 -9.668 -10.03 3.024 -1.792

4 14.13 14.68 -2.995 -0.4695

5 -17.87 -18.58 2.218 2.061

6 -19.90 20.69 -0.7908 -0.5889
7 -19.62 -20.37 -0.9067 -1.924

8 17.01 17.64 2.369 1.644
9 -12.73 -13.16 -3.192 0.9120
10 7.876 8.118 3.103 -1.868

11 -3.686 -3.766 -2.315 0.1753

12 1.000 1.000 1.000 1.000
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2.8 INTERPRETATION OF NONITERATIVE ESTIMATION METHODS IN TERMS OF
THE EVD/SVD ANALYSIS OF THE DATA MATRIX

Now that the sense in which the EVD/SVD analysis is superior in

resonance extraction has been defined, we proceed to soften this claim

of superiority by demonstrating that all methods examined thus far can

be interpreted as methods for constructing the parameter vector as a
I~j. T

.weighted co.rbination of the eigenvectors of Q Q. The particula mode of

r ~ combination and the particular choice of weights uniquely determine each

method. Hence all methods in the end can be interpreted as particular

methods in which EVD/SVD analysis plays an integral part. The question

of superiority reduces to the question of what is the best way to combine

the eigenvectors to form a parameter vector. Although we may not come

to a conclusive answer to this question in this report, we examine several

first approaches for the best method of combination in the section on order

selection procedures.

Here we will show that our previous claim of superiority of EVD/SVD

analysis only holda in a rather restricted case and restricted sense, and

that an unqualified claim of superiority in the general case is not wise.

The inhomogeneous solution can be expressed as a linear combination

of the eigenvectors of QT Q To show this, we begin by noting that by

Cramer's rule it is possible to write

I NN W n

Where A denotes the element of the d row and j t column of ad n Q T dQ.
ii

"Also we have the identity

adj Q TQ - det Q TQ VA- lVTK N NVv T
W det QTQ (7v)v

K 2-17
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-h -- T_

where vi the ith column of V the ith eigenvector of QTQ corresponding

Sto X A scaled parameter vector constructed from x1 which yields identicali

pole estimates is

X a ( A2N,..* 1 q

th T -i.e., the N column of adj Q Q. From (7) it follows that x is a linear

combination of the eigenvectors:

N

I ~ ii

where the weighting coefficients are C det QTQ v /A and viN is the
IN i h h

element of the row and the N column of V. Therefore, the estimates
obtained with the inhomogeneous solution are equivalent to the estimates

obtained using a weighted combination of the eigenvectors. Note that the

eigenvectors are weighted in inverse proportion to the corresponding

eigenvalues.

In the so-called EVD/SVD method of obtaining the parameter vector

the weightinT coefficients are all zero except the coefficient corresponding

to the weakest eigenvector of Q TQ which is non-zero. This method chooses

the weakest eigenvector as the "natural" approximation to the eigenvector

corresponding to the zero eigenvalue for the noise-free case.

The sensitivity of x1 to noise level is a particular function of the
way the eigenvectors are weighted to form x For the noise-free case,
all coefficients except the one for the weakest eigenvalue are zero and

Sis simply a scaled version of the weakest eigenvector of Q TQ. However,

for the noisy case x is not determined only from the weakest eigenvector
but is a combination of all elgenvectors. Since the eigenvectors span the

space of all possible parameter vectors, xI then has components that may

not be appropriate for resonance estimation. These inappropriate perturb-

ation of xI are maifested in the expected sensitivity of xI to the noise
level. We stress that the components that are appropriate for resonance
extraction have no clear definition at this time. Any absolute claim of

:.7i superiority of one meLhod over another is, in our opinion, ill-advised.

2-18
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So far we have only considered the case when n - k and W W has only

one zero eigenvalue. In this case, it seems quite appropriate to choose
T

the weakest eigenvector of Q Q as the "natural" approximation to the weak-

est eigenvector of W TW which is the true parameter vector in the noise-free

case. But what is the appropriate choice when k < n? In this case, W TW

has more than one zero eigenvalue so that it seems appropriate to combine,

in some way, the weakest n - k eigenvectors of QTQ to form a parameter

* vector. But what is the best method of combination? Also, it is necessary

to reduce the dimensionality of the parameter vector when k < n since there

"K; are only k resonances and an N-dimensional parameter vector yields n - N-I

resonance estimates. How can this be done? These questions will be explored

further in the section on order selection procedutes.

2.9 JAIN'S METHOD

A• Another interesting method to find a parameter vector was developed

by Jain and Gupta [17]. Although Jain uses this viethod with the pencil-

of-functions procedure [18], we examine this method in the context of

Prony's difference equation. The pencil-of-functions method is described

in Appendix D. Jain's method consists of choosing the elements of x as

the square roots of the diagonal elements of the adjoint matrix of QTq.

The choice of signs for the square roots was not a problem in the original

pencil-of-functions method since for a large class of problems the square

roots were known a priori to be positive. However, we are not as fortunate

with Prony's difference equation: there is no means to establish the signs

of the square roots a priori. Nevertheless, it is instructive to overlook

this difficulty and to examine how the method may be interpreted in terms

of the EVD of QTQ. Jain's method can be interpreted as a means of construct-

ing a parameter vector from the eigenvectors of QTQ Just as the previous

two methods were interpreted.

Jain's method chooses the parameter vector as

"X 22,. / NT9
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where the choice of sign is somehow known a priori. From (7) the diagonal
Telements of adJ Q Q can be expressed as

N T 2i•,, ll Z det QTQ j
Sji-i xj vi

clarthn ht i acmbnaio th rwad th clm fV ti
where v denoLes the element of the i row and j column of V. It is

clea thn tht xis cominaionof all the eigenvectors even though

it is not a linear combination. Again, each eigenvector is weighted in

inverse proportion to the corresponding eigenvalue as was done in the

combination for xI. It follows that x then is influenced by all the

, eigenvectors which may not be appropriate for resonance extraction. What

effect the mode of combination has on x is difficult to estimate.

Because of the weights used in the combination for x., we would expect II
" to yield comparable resonance estimates to those yielded by x1 although

these estimates would be different.

2.10 ITERATIVE TECHNIQUES

One can use EVD/SVD of QTQ to construct parameter vectors and estimate

the resonances. But to obtain a fit to the response, coefficients A' must

be chosen to minimize (5). This two-step procedure is peculiar. It would

seem that both the z' and Aý should be adjusted simultaneously for the

best fit to the waveform. Henderson [15] has shown that for the noisy case

the resonance estimates obtained by choosing the parameter vector as the

weakest eigenvector of QTQ do not provide the absolute minimum of (5) or,

in other words, they do not provide an optimal fit to the data in sense

of (5). The basis of this behavior can be traced to the fact that the

weakest eigenvector minimizes NQE. Minimizing NQE is not equivalent to

minimizing (5).

"2-20
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To the authors' knowledge, only iterative procedures, such as that
described by Evans and Fischl [19], (also described in Appendix G) can

be used to choose both A' and z', simultaneously to minimize (5). Hence,
if we wish to "improve" the estimates beyond those obtained with the EVD/SVD

Tof Q Q we must resort to an iterative technique. The question of how much

the choice of error criterion alters the estimates can be approached with

a relation between the two criteria obtained by Evans and Fischl (19]:

d xTr (8)

where

a 0 ... 0

00

*. . . .* . at0

X a n an-i
0 a

n

• " "" " n-i

n -

is an (M + N- 1 x M)-dimensional matrix and r- [rrrl,..., rmn]T is
the residual vector obtained by adjusting only the A to minimize (5)

for a given set of z' corresponding to a given parameter vector:

n
r - A- (z) i - 0,1,...,m /ni.
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From (8) we observe that minimizing the norm of r provides a minimum upper

bound on the norm of d through

I jdjj 11 X' T 1 jrjj

where I is defined as the largest singular value of XT.* Since the

characteristics of the X matrix depend on the data, we expect that certain

extreme cases can be found where the two minimizations yield radically

different estimates. Our own experience with actual data indicates that the

two procedures yield comparable results when care is taken to apply each

technique in the proper fashion. It is clear, however, that minimizing one

error loosely minimizes the other so that if we are not too critical we may9
claim that both errors are approximately minimized simultaneously. Unfor-

tunately it is not possible to predict how loosely the two minimizations are

coupled without knowledge of the particular data given for resonance extraction.

Most iterative techniques attempt to mA.Lnimize (5). Another novel

iterative method, known as the iterative generalized least-squares procedure,

does not attempt to minimize (5) but attempts to remove the source of

asympotic bias" of the parameter vector by "whitening the residuals". on

pages 214-219 of Eykhoff [20] the source of the bias is defined as

correlated residuals. On pages 244-247 the Seneralized least-squares

method is defined and an algorithm due to Clarke [21] is presented as a *

means of implementing the method. Clarke's algorithm is specialized and

applied to "whiten the residuals" of the least-squares Prony technique in

Appendix A of this report. The generalized least-squares procedure is

fundamentally attempting to minimize the equation error and is not attempting

to minimize (5). Furthermore, the procedure attempts to neutralize asymtotic

bias which is only defined for an infinite data sequence in the strictest

interpretation. For these reasons, the generalized least-squares procedure

is fundamentally different from the other type of iterative methods we have

dis cussed.
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For the inhomogeneous solution, which Clarke's procedure begins with,

the bias is due the presence of a second-order noise term, ZTE, in
-T- - T( + + -T- -T- -I T-Q - (W + (W + E) . W + E + E W + E. This same term is the source

2of the Ma I term in (6) which was held to cause the noise level sensitivity

of x1 . Perhaps the most significant comparison that can be made is between

the generalized least-squares procedure and choosing the weakest eigenvector

as the parameter vector. Both of these estimation techqniques neutralize

the ill effects caused by the second-order noise term mentioned above.

Although they will, in general, yield different estimates, the estimates are

expected to be comparable in accuracy.

One major drawback of the iterative procedures is that they often do

not converge. Guaranteed cunvergence is a requirement for any automatic

resonance extraction procedure. We, therefore, recommend that the iterative

techniques be avoided in this application. The use of EVD/SVD analysis to

form resonance estimates is the safest procedure and can achieve the degree

of accuracy of the iterative techniques.

p 2.11 GFNERALIZATIINS

Up to this point, we have considered only the case that satisfies

the following restrictions:

1. Prony's difference equation is used to estimate the resonances.

2. The impulse response of the system can be measured.

Ncw the more general case where these restrictions have been relaxed is

considered. The generalization is accomplished by replacing Prony's

difference equation with the equation

n

Z (a Pj j q Ji) gi i-0,l,...,m. (9)
J-0
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where PJi and qji are che ith samples of the j filters on the input and

output, respectively, of the system as shown in Figure 2.2.

Figure 2.2 depicts a single-input, single-output linear system whose

transfer function is denoted H and is referred to as the "true transfer

function". The input to the system is denoted pt and is not necessarily

an impulse. The output to the system is denoted q . Both the input and

output are corrupted due to measurement error to form the measured input,

and the measured output, q . An estimate of the true transfer function

is to be constructed. The poles and residues at the estimated transfer

function are estimates of the resonances and residues of (1) for the case

of nonimpulse excitation.

Equation (9) can be written in matrix form as SI e g where

q00  q 10  "'" 0  Pno
q} .q01 ql '1 " q nl P01"' Pnl

* ,. . . . !_
q~ q~ q~ p

is the (M x 2N)-dimensional data matrix and e (-a0'-l" '-an'088"' T

is the 2N-dimensional parameter vector.

The filters in the model of Figure 2.2 are typically chosen as first-

order discrete filters whose transfer functions, F (z), may possess one

zero or one pole or both. Once 8 is adjusted to minimize g an estimate of

the transfer function of the system can be formed as

8 F + + n F

00 nn

a F +."" + aF
020 n -2

2-24



-W

Estimates of the z-plane poles of the system, z" may be taken as the
m mI poles of Hm. The A' may be taken as the residues of H

YJ

The special case of Prony's method results from this general scheme

when the F (z)-Z and the input is zero, i.e., pi-O for i-O,...,n. In

. this case, 0e-g reduces to Qx-d.

F1, Any of the methods for constucting a parameter vector with Prony's

difference equation can be applied, with suitable modifications, to construct

e. The most straightforward way to construct e is to choose it to minimize

gI g/80 which is equivalent to choosing 6 as the weakest eigenvector of n * f

where the asterisk derotes the transpose conjugate.

f I.
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Figure 2.2. Generalized model of a linear system. e'
and e are measurement error sequences.
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2.12 SUMMARY AND CONCLUSIONS

Some of the more significant conclusions of this section are summarized

below:

1 1. The analysis of the noise effects on the inhomogeneous solution

and the lowest eigenvector of QT Q indicates that the lowest

eigenvector is less aensitive to noise than the inhomogeneous

solution. Hence, the inhomogeneous solution is considered less

desirable of the two for resonance estimation.

S'I 2. All noniterative methods for finding a parameter vector; that is,

the inhomogeneous solution, Jain's method, and EVD/SVD analysis;

can be interpreted as methods of combining the eigenvectors of
QTQ to construct a parameter vector.

3. Iterative techniques are fundamentally differenc from the nonitera-

tive techniques which we have examined in this section. Most

iterative techniques choose the parameter vector to minimize the

"true error" between the given data and an approximation to the

data while noniterative techniques attempt to minimize "equation

error". There is no reason to believe that minimizing "equation

error" produces less accurate estimates than minimizing "true

error . While it may be more satisfying to minimize "true error",

it is questionable that the added expense and possibility of

divergence associated with an iterative technique is merited by any

gain in accuracy that might exist.

4. The iterative generalized lease-squares algorithm due to Clarke

[21] is fundamentally different from the other iterative techniques

reviewed in this section in that it does not attempt to minimize

"true error". It is not completely clear what this method accomplishes

since the criterion it attempts to satisfy, that is, "white residuals",
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cannot be realized exactly with a finite data sequence. If we were
to use an iterative technique for our applicatioa we would prefer
that it satisfy some type of tangible criterion s,:•h as minimum
"true error". For this reason the iterative genex.lized least-
squares procedure is Judged to be less useful that he other
iterative techniques for our application.

5. All methods for constructing a parameter vector for Prony's

difference equation carry over to the generalized mode) with
suitable modifications where necessary.

6. For the purpose of automatic resonance extraction when it is
known that n-k, the estimation procedure where the parameter vector
is chosen as the weakest eigenvector of Q TQ or 0 * a is Judged to
be best of all iterative and noniterative methods. A similar pro-
cedure for the case where n>k is defined in the section on model
order selection procedures.
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3.0 PROCEDURES FOR ORDER SELECTION

3.1 INTRODUCTION

In Section 2, we assumed that k, the true number of resonances,

K which is equivalent to the rank of W, was known. In practical applications

of resonance extraction procedures this assumption is unrealistic. The

estimation of k for noisy data is not a simple problem since Q will be full
rank or of rank N, whereas if there were no noise, Q - W, and the rank of

W is easily determined.

Furthermore, in Section 2, we assumed that n -k. In this section

we examine the case where n> k. Since the parameter vector is of length

N - n + 1, there will be n resonance estimates produced by the estimation

techniques of Section 2. There will then be n - k extraneous resonance

estimates. We will present a procedure developed by Henderson [15] for
solving this problem in this section.

In Section 2, it is shown that the noniterative procedures for
TLestimating the resonances can be interpreted in terms of the EVD of Q Q.

Each estimation method that we studied combined the eigenvectors in a

particular way to form a parameter vector. It is not surprising that EVD

analysis holds a central position with regard to all of these particular

methods since EVD is simply a way of rearranging the information in a

matrix in a form that reveals the essential characteristics of the infor-

mation. Each estimation method is a particular way of combining the

information to form resonance estimates. For this reason we adopt EVD
analysis as a standard tool to be applied in any noniterative automatic

resonance extraction procedure. Iterative procedures are not considered

for this application because of their inherent problems such as lack of

convergence and computational expense.
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When n - k we concluded in Section 2 that the weakest eigenvector of

Q was the most "natural" approximation to the null eigenvector of W W

where the term "null eigenvector" denotes an eigenvector corresponding to

a zero eigenvalue. But in the case where n > k, there are n - k null
Teigenvectors of W W. Are we then to take some combination of the n - k

weakest eigenvectors of Q TQ as the most "natural" approximation to the
"true" parameter vector? This question is addressed in this section.

Distributed linear systems such as a scatterer often have an infinite

number of modes which means that k is infinite. What courses of action

are available to us in this case? In practical cases there will be only a

finite number of strong modes present in the data due to the fact that in

: j lany ptactical case the dominant frequencies present in the excitation will

be limited to a frequency band of finite width. Highly damped modes will
also be weak. The weaker modes will be lost in the measurement noise so

that even though k may be, in truth, infinite, practical considerations

dictate that k be estimated at a finite value.

This section concentrates on answering three questions:

1. How can the true number of resonances be estimated when n > k,

k is unknown, and the noise level is unknown? (Order selection

procedures)

2. How can the eigenvectors of Q TQ be best combined to form a

parameter vector once an estimate of the true order is

available? (Procedures for constructing resonance estimates)

3. How can the extraneous resonance estimates be eliminated?

Only the simple case where Prony's difference equation can be applied

is considered in this section.
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3.2 STATISTICS OF THE EIGENVALUES OF QTQ

The problem of estimating the order or rank of WTW reduces to the
Tproblem of discriminating which eigenvalues of Q Q correspond to zero

eigenvalues of wTw. If we assume that M > N then QTQ will have no zero

eigenvalues due to the noise in the data. In order to isolate the

eigenvalues that would normally be zero we must come to some understanding

of how the noise perturbs the eigenvalues. The first step toward this

understanding is realizing that the eigenvalues of Q TQ can be described

as random variables. The statistics of these random variables depends

to a large degree on the statistics of the noice in the data. In most

practical circumstances the statistics of the noise will remain unknown.

Beyond this, it is simply convenient to assume, in order to remain completely

general, that the noi& is altogether unknown but that it has certain very

general characteristics by which it can be distinguished as noise. These

characteristics are taken to be:

1. Uncorrelated from sample to sample or white. (If we

assume that the noise is due to a very large or infinite

number of very small uncu.L.trolled influences which are

sufficiently distant from each other to remain independent

then the noise can be expected to be white).

2. Normally-distributed with zero mean and standard deviation

of a. (By the Central Limit Theorem [22] if a random

variable is the sum of an infinite number of independent,

zero-mean random variables, each with any distribution

whatsoever, subject to certain very general constraints,

then that random variable is normally-distributed and

zero-mean.)

The assumption of white noise is believed to be the best assumption

that can be made when nothing is known about the noise. This conclusion
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is derived from the following line of logic: If the noise is correlated

or nonwhite, it can be decomposed into a deterministic component and a

purely random or uncorrelated component. The deterministic component

of the correlated noise represents undesired information which cannot be
distinguished from the desired information. The deterministic component

must then be modeled by increasing the order of the difference equation

model beyond that required by the desired information. The unmodeled
portion of the noise is then uncorrelated and comprises the residuals

of the model. An uncorrelated noise sequence represents pure randomness
or lack of information aad is the most difficult of all sequences to model.

Summarizing this argument, if we are given only the data and absolutely

,,I no other information, we must assume that all deterministic components

0, in the data contain information and the residual, purely random component
is white noise. We desire to develop a procedure to estimate the "true"

order based on the assumption that the noise corrupting the "true" data

is white.

Given these assumptions about the statistics of the noise, a

"description of the statistics of the eigenvalues is desired. The statis-
tical literature falls considerably short of an adequate analytical
description of the statistics of the eigenvalues of a matrix such as Q Q

although crude approximations to the statistics can be found (23].

Derivation of an analytic expression for the -statistics is not a simple

task. Our approach is to derive an adequate approximation for the eigen-

value statistics based on empirical studies. (An example of the type of

studies performed is shown in Figure 3.2.)

Before defining a model of the eigenvalue statistics (or eigen-

statistics for short) it is useful to examine the eigenvalues of the expec-

tation or average value of QTQ. If the EVD of WT - VWAW VwT, then the
T W WW

EVD of t[Q Q] = V (AN + IMo2 IV. In other words the EVD of the expecta-
T Ttion of Q Q is equivalent to the EVD of W W except that each eigenvalue

2has Ma added to it. This is illustrated in Figure 3.1. The observed

eigenvalues in specific random picks of Q have some distribution about

these expected values. We desire to find an approximation for this

distribution.
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The eigenvalue matrix has the form

i 0
x2

W..
ANl

0 w
XN

W W W Twhere X < X <... < X are the eigenvalues of W W. The model that is

proposed for the eigenstatistics can be written as a particular form of

the EVD of QTQ:

wTQ Q V[Ai + Y]VT

where V is an (N x N)-dimensional orthogonal matrix whose columns are the
eigenvectors of QTQ, Y is an (N x N)-dimensional diagonal matrix whose

diagonal elements are samples of the random variable y. The frequency
function for y is denoted f(y) and completely describes the eigenstatistics
of the model. This model is chosen because it provides an adequate descrip-.

tion of the statistics that have been observed in empirical studies.

The frequency function, f(y), can be approximated as

f (y) - K 2By

1(1 + BY)2 2/

where K is a scalar constant chosen so that

f(y)dy 1, 
.

and

1B- 4 2
(M -3
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The form of this frequency function is based on the frequency function

found on page 261 of reference [23]. Substantial modifications were

required to fit that frequency to empirically observed statistics.

This approximation or rule for the eigenstatistics is quite accurate
when M/N > 2, is acceptable in accuracy when 3/2 < M/N < 2, and is generally

increasingly unacceptable in accuracy as M/N approaches 4/3 or falls below

4/3. In practical situations quite often M >> N so that the rule usually

is sufficiently accurate. Figure 3.2 compares this rule against the

observed statistics for a particular value of M/N. The histogram of

Figure 3.2 is formed from the results of 200 Monte Carlo trials where each

trial consists of the EVD of Q Q and Q is composed entirely of noise

samples. The aoise was uncorrelated and normally-distributed with zero-

mean and standard deviation a. All thirteen eigenvalues from each trial

were used to compile the histogram so that the histogram represents a

compilation of 2600 eigenvalues. Since Q is Aomposed entirely of noise,

Sthe eigenvalues of WTW are all zero in this case or AWN-W0. It follows

that the eigenvalues of Q TQ by our model consist solely of samples of the

random variable y. The approximation to the frequency function is plotted

with the histogram for comparison in Figure 3.2. The rule has been tested

at various other values of M and N with good comparisons in each case

Provieed that M/N > 3/2. For the case shown we note that the rule seemr

to describe all features of the eigenstatistics.

The model of eigenstatistics provides information about how the

eigenvalues of QTQ should behave. In particular, the model can be used

to distinguish those eigenvalues of Q TQ that correspond to zero eigenvalues

of wTw since these eigenvalues consist entirely of samples of the random

variable y and no other component, whereas, the other eigenvalues have

deterministic components that serve to distinguish them. The method in

which the model is applied to discriminate between the eigenvalues is

covered in our description of order selection procedures which follows.
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3.3 PROCEDURES FOR ESTIMATING THE TRUE ORDER

Here we consider the problem of estimating k, the "true" number of

resonances given the EVD of Q Q for some value of n > k. Inaccurate

resonance estimates result when n is l ss than the number of dominant

resonances since in this case the unmodeled resonances appear as a large

noise component. It must be assumed that n can be chosen sufficiently

large for the resonance extraction procedures to be effective.

In practical cases the noise level is unkuown. The order selection

A"i procedure we use then should not depend on this information. We have found

three procedures that are suited for this problem:

S1. The likelihood ratio criterion [24].

2. Akaike's Information Criterion [24,25].

3. Mpximum likelihood criterion developed by ETI.

The first two criteria were designed for use with the minimum quadratic

error for a particular model order. Use of these criteria required that

a model be fitted to the data for all orders Z of possible Interest.

Because fitting a model at large number of possible values for Z is an

expensive procedure and because we desire to use the EVD to determine the

model order, we adapted the first two criteria to use the eigenvalues of

Q TQ instead of the QE. What effect this modification has z the results

will be discussed when each criteria is described.

The likelihood ratio criterion after being adapted for the use with

the eigenvalues, can be stated simply as

S1 << <

i < 2 "''- N This criterion is based on the principle that the eigenvalues

corresponding to zero eigenvalues of W W will be nearly equal, especially

when M/N >-, 1. 6 is the threshold below which the eigenvalues are considered

L.



equal. The order is chosen somewhere in the vicinity of where the

criterion Is satisfied for severai consecutive values of Z. The criterion

will in general not continuously increase as k increases because the

random nature of the eigenvalues is such that the test must be successful

several times to be sure that the proper order has been reached. Use

r of the criterion is illustrated in Figure 3.3. The order is chosen as

k" N - Z, where %Z is the value of Z for which the criterion is satisfied.

The 6 parameter could be chosen by use of the eigenvalues modil developed

in this section.

Akaike's criterion as it has been adapted for use with the eigen-

I ~values is+

~,,AIC(R) = 9n X +l 2ZN

The criterion is evaluaLed for Z - 1,...,N. If the value of Z that

minimized AIC is denoted 1', the estimated order is then k' N -Z '

In order to adapt this criterion for our purposes, we have probably taken

a few more liberties than Akaike would have permitted. If the criterion

defined above does not work well it should not be taken as a true

reflection of the performance of the original criterion. Figure 3.4

illustrates the application of Akaike's criterion.

The third order selection procedure is the maximum likelihood (ML)

criterion. This criterion was developed specifically for applicition to
Tthe eigenvalues of QTQ. This procedure examines the smallest £ eigenvalues

and assesses the likelihood that those eigenvalues are due to noise only or,

in other words, correspond to the zero eigenvalues of W TW. This is done

by comparing the observed eienvalues to the known frequency function of y.

The standard measure of how well a set of observed values match a

knowa distribution is the likelihood function. The likelihood function

that is used for this criterion is the mean log-likelihood defined as

k
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L£(X 2 ,...,X ;NMaest) - • 2.n fl (A•k;NMaet-L (N,M)
k-i

where L is the expected log-likelihood assuming the eigenvalues are due
0

to noise only and is defined as

L (N,M) - f (y;N,M) Zn f (y;N,M)dy

The L term normalizes the criterion relative to the expected likelihood.

0
•'.• est is an adjustable parameter corresponding to the unknown standard

deviation of the noise, a; and

?, 12M/N
f (X ;N,M;a ) K2
1 k est

where B 4 2
(M -N)a

Because the standard deviation of the noise is unknown, a must beest
adjusted to maximize L. The maximum of L Z is taken to be the likelihood

that the £ smallest eigenvalues are due to noise. The value of a that

maximizes LZ is an extimate of the unknown noise level. When the maximum

of L falls below a certain value, which is called the cut-off likelihood

and is denoted L , the observed eigenvalues are so widely distributed that

the extreme values fall well into the tails of the frequency function

regardless of how a is adjusted. Presumably when this occurs some of
e[t

the eigenvalues are not due solely to noise and deviate significantly from

the noise eigenvalues.

The criterion can be interpreted in the following way. a isS~est

adjusted to fit the set of observed eigenvalues into the statistical

distribution for noise eigenvalues. When the best fit possible does not

yield a sufficiently high likelihood that the eigenvalues are due only to

noise then the criterion is triggered.

31



The maximum likelihood procedure for order selection consists of

the following steps:

1. For Z - 2,3,...,N adjust aest to maximize L

2. Choose Z' as the largest value of Z such that

max
aest Li > Lc for i - 2,3,...,Z.

3. The selected order is then N - Z' and the value of a
est

that maximizes L. is an estimate of the noise level,.

S4. if •a s L Z > L Cfor 9. - 2,...,N, then the procedure cannot

A 'I discern a significant difference between the observed eigen-

values and the eigenvalues of a matrix with purely random
data.II

The choice of the cut-off likelihood, L c, determines how sure one

wants to be that the lower eigenvalues are due to something other than

noise. When the observed eigenvalues are due to noise only, the maximum

of L tends to vary randomly about zero. Figure 3.5 shows a histogram of

the maximum of L. 0 From the histogram it can be concluded that if Lc is

chosen as -1 then there is approximately one chance in a hundred that the

criterion will be triggered due to noise only. Because of the nature of

the likelihood function, this false alarm rate for Lc - -l should be
relatively indifferent to the values of M, N, or Z. Lc - -l should

therefore represent a false alarm rate of approximately one in a hundred

for all problems.

3.4 PROCEDURES FOR CONSTRUCTING A PARAMETER VECTOR

Now that several possible procedures for selecting the order have

been defined, we consider the questions:

1. How can the eigenvectors of QTQ be best combined to form a

parameter vector for resonance estimation?

2. How can the extraneous resonance estimates be eliminated?
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In Section 2, it is demonstrated that all the noniterative resonance

estimation techniques, e.g., the inhomogeneous solution, Jain's method,

or choosing the weakest eigenvector, can be interpreted as different ways

of combining the eigenvectors of Q Q to form resonance estimates. We

concluded that choosing the weakest eigenvector as the "best" estimate of

the null eigenvector of W TW was the most "natural" estimation procedure

for the case when n - k. For the case when n > k the "natural" estimate

of the parameter vector is less clearly defined.

Any vector, x , in the space spanned by the 2 weakest eigenvectors

of Q Q satisfies

2. (Qx)Z (Qx)Z

((x T(x )

where N - Z is the estimate of the "ture" order. Stated differently, any )
vector in the space spanned by the Z weakest eigenvectors produces a value

of NQE less than the value of X .  It follows that any x can be consiuered
as an approximate solution to Prony's difference equation. Unfortunately,

there are many choices for xZ . In addition, x is N-dimensional so that
it will yield n resonances when N - Z is the appropriate number of reson-

ances. Henderson [15] devised a method to resolve these difficulties.

- Henderson's method is based on a concept he termed "the i th auto-
regression nullspace" which is defined as the rowspace (the space spanned

by the rows) of the (2 x N)-dimensional matrix
0.1 ao 0 k .. 0

the0 treore L. 0 (A :k: be an

U 0 L0 a, ""- a

where the a. are, in this case, the elements of the true parameter vector,

Sthe true order is k, and N - k + Z. Let h - [ho,h,h,... h be any
01' n

vector in the row space of G2 . Henderson proved that the roots of the

polynomial,
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h.z -0,1 -o (to)

constitute a superset of the roots of the "true" polynomial,

k

J.0

The roots of the true polynomial are the exact z-plane poles of the system.r.', The othar Z-1 roots of (10) represent ext'aneous roots. A vector h can be

found to produce any specified set of extraneous roots.

The essence of Henderson's method consists of approximating the

rowspace of Gz by the space spanned by tihe Z' weakest eigenvectors of Q Q.
By making this approximation it is possible to form an estimate of the
"reduced" (k'+l)-dimensional parameter vector. Here N - k'+Z" where k'

is an estimate of the true order k. The procedure is:

1. Form a matrix whose rows consist of the Z' weakest eigenvectors

of QTQ.

2. Use a Gaussian elimination procedure on the matrix of step 1

to form an (V/ x N)-dimensional matrix with zeros in the

opposing corners. The matrix has the form:

ooxxxxo I0
000XXXXJ

where "X" denotes a nonzero element. This matrix is intended

to approximate G in some sense.

3. Form an (V/ x k' + l)-dimensional matrix, H , by eliminating the

zeros and appropriately shifting the rows of the matrix in step 2.

Each row of this matrix should be an approximation to the true

parameter vector in some sense.

3-17
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4. The "best" estimate of the true parameter vector is the

strongest eigenvector of HTH.

This procedure is an ingenious way of getting around the difficulties

we mentioned previously and is intuitively pleasing. However, if we choose

to be critical, it is clear that some very perplexing questions could be

asked about this procedure. For example, what error criterion or other

quality measure of the estimates does the reduced parameter vector obtained

with this procedure satisfy?

On further study of this procedure, other unanswered questions arise:

1. The procedure begins by loading the eigenvectors into a matrix.

Perhaps the eigenvectors should be weighted somehow according

w 1 to their relative merits in estimating the resonances before

being loaded into the matrix. The weights might be based on

£ how well the corresponding eigenvalues fit within distribution

for the noise eigenvalues in the third step of the ML proce-

dure or on the values of the corresponding eigenvalues them-

selves. How should the weights be defined?

2. The use of Gaussian elimination to form an estimate of G

may not be the best procedure to use since Gaussian elimination

can emphasize certain directions in the space spanned by the

eigenvectors that were not actually dominant originally. This

emphasis of certain directions could unduly perturb the reduced

I' parameter vector. It may be possible to use certain orthogonal

transformations in place of Gaussian elimination so that the

magnitudes associated with the directions are not altered. What

specific procedures can be applied in place of Gaussian elimination?

These questions merit further study.

(1
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3.5 NUMERICAL EXAMPLES

The waveform used in the numerical example of Section 2 is used

again for these numerical examples which illustrate the order selection

procedures and the procedure to eliminate extraneous resonances. The

waveform is corrupted with uncorrelated, normally-distributed noise with

zero-mean and standard deviation a - 0.01. The data were used to fill the

(M x N)-dimensional matrix Q where M and N were chosen to be 379 and 20,

respectively. The number of samples used in filling Q is M + N - 1 - 398.

r The last two samples of the waveform were unused. The eigenvalues resulting
T

from the EVD of Q Q are shown in Figure 3.6. We note that it is readily

•'I apparent to the eye which eigenvalues are due solely to noise.

. Table 3.1 displays the resonance estimates obtained using the weakest
T

eigenvector of Q Q and by using Henderson's procedure to eliminate the

extraneous poles. Since the poles must occur in conjugate pairs when they

are complex, we only show the poles in the upper half of the s-plane (posi-

tive-imaginary region of s-plane). The extraneous resonances that result

from the weakest eigenvector are not shown. Henderson's algorithm does,

in fact, eliminate the extraneous resonances and does yield relatively

9 . accurate estimates of the true poles. But when the estimates using Henderson's

procedure are compared to those using the weakest eigenvector, we note that

Henderson's procedure produces less accurate estimates. The reasons behind

the less accurate results are thought to be related to some of the unanswered

questions about Henderson's procedure which are enumerated in this section.

Table 3.2 displays the results of applying the maximum likelihood

order selection procedure to the observed eigenvalues in Figure 3.6.

We recall that this procedure selects an integer, k', as the largest

value of Z such that

max
Li < L for i = 2,3,...ZCest c
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Figure 3.6. Eigenvalues of QTQ for numerical example.
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Table 3.1. Comparison of resonance estimates in terms of
s-plane poles.

Real Parts of Poles

Estimated

True Full ** True*True Order Order

-0.082 -0.082 -0.128

-0.147 -0.146 -0.118

-0.188 -0.185 -0.100

,' -0.220 -0.218 -0.232

-0.247 -0.251 -0.299

-0.270 -0.269 -0.276

Imaginary Parts of Poles! Estimated

Full ** True*
True Order Order

0.926 0.926 0.955

2.874 2.873 '.965
4.835 4.838 4.819

6.800 6.802 6.722

8.767 8.766 8.743

10.733 10.737 10.746

* Estimates for true order formed by using
Henderson's procedure.

•* Estimates using the weakest eigenvector of
QTQ. The extraneous poles are not shown.
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Table 3.2. Results of application of the
Maxium ikeihod oderselection

procedure.

z. max L CF

2 0.435 0.009778

3 0.431 0.009991

4 0.439 0.01011

5 0.444 0.01021

A6 0.355 0.01045

7 0.305 0.01065

8 0.191 0.01096

9 -93.9 ---

10 -93.9 ---

11 -93.9 ---

12 -93.9 ---

13 -93.9 ---

14 -93.9 ---

15 -93.9 ---

16 -93.9 ---

17 -93.9 ---

18 -93.9 ---

19 -93.9 ---

20 -93.9 ---

3- 2'9



The column in the table labeled max L tabulates the maximum of L obtained

by adjusting a for each value of 1. If the cut-off likelihood were• es t
chosen as Lc -1 (which is the recommended value), then the procedure

selects Z' - 8 since this value satisfies the above requirements. The

selected order is then N - Z' - 12 which is exactly the true order. We

conclude that this procedure works very well for this particular example.

A more severe test can be imagined, however, where the two groups of

eigenvalues are not so clearly distinguishable. Also, note that the method

yields a very reasonable estimate of the noise level at Z = 8.

An attempt was madc to perform a more severe test but representative

results were not produced. The crude algorithm we are currently using to

search for the maximum likelihood breaks down for the more severe case.

The problem, though, is purely mechanical and does not indicate a true limit-

"" ation of the method. The true test o4 the procedure is its application to

real, measured data.

Table 3.3 shows the results of applying Akaike's criterion to the

observed eigenvalues. The minimum value of AIC (k) defines the order.

From Table 3.3, we observe that tie x.nimum occurs at X - 1. One wonders

if a larger value of N were ust. •hether AIC(£) would go through a clearly

defined minimum. If -we assume that Z' - 1 is an accurate prediction, then

the 3elected order is N - £" 19 which is not the true order. We conclude

that Akaike's cricerion does not work very well when applied to the eigen-

values. Th1s conclusion does not indicate that Akaike's original criterion

is not effective since the criterion we have used has been considerably

modified to enable application to the eigenvalues. Akaike's original

criterion was never intended to be used in this way.

Table 3.4 displays the results of applying the likelihood ratio

criterion to tke observed eigenvalues. We observe that the values of

1 A /+ for Z < 8 do not differ significantly from the values for
Z > 8. There is then no clean break point for choosing the order. We

conclude that the likelihood ratio criterion, as tie have applied it, is

not suitable for selecting the order from the observed eigenvalues.
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Table 3.3. Results of application of Akaike's critirion
for order selection.

AIC(Z)

1 -3.40

2 -3.21

3 -3.18

4 -3.18

5 -3.16

6 -2.96

7 -2.94

8 -2.80

9 +2.77

10 +2.79

11 +2.98

12 +3.00

13 +3.18

14 +3.26
15 +3.40
16 +3.60

17 +3.82

18 +4.18

19 +4.59

20 +4.97
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Table 3.4. Results of application of the
likelihood ratio criterion.

1 0.1812

2 0.0293
3 0.0102

rt4 0.0225

5 0,84
6 0.0201

7 0.1399

18 0.9962
9 0.0257

10 0.1744

11 0.0213

12 0.1722

A13 0.0829

14 0.1329

15 0.1900

16 0.1996

17 0.3057

.18 0.3382
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3.6 SUMMARY AND CONCLUSIONS

Some of the more significant results of this section are summarized

below.

1. Henderson's procedure for constructing a parameter of reduced

dimension has been tested on synthetically-generated data and

has produced accurate resonance estimates although the estimates

V were less accurate than those obtained using the weakest eigen-

vector procedure. Some unanswered questions about Henderson's

procedure merit further study.

2. Three methods for estimating the true number of resonances were

~: .~introduced in this section. On testing each procedure with

I synthetically-generated data we found that only one of the

I procedures gave a reasonable estimate of the true number of

:~ '1resonances. This method was the maximum likelihood procedure.

I3. A model has been developed for the statistics of the eigenvalues

I-of Q TQ assuming that the noise corrupting the waveform is white

and gaussian-distributed. The model is used in the ML procedure

for selecting the order.

4. The HFTI algorithm [16] is Judged to be less useful for order

L determination because it provides no means of constructing

r a parameter vector.

5. Another method for order estimation is the time-reversal

technique described in Appendix I. Almost nothing is known

about the precise way in dhich this procedure is able to

discern which resonances are extraneous. We are, therefore,

hesitant to recommend this procedure until it is better

I understood.
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4.0 AUTOMATIC PROCESSING CONSIDERATIONS

4.1 THE AUTOMATIC RESONANCE EXTRACTION PROBLEM FOR RADAR TARGET
IDENTIFICATION

There are two types of resonance extraction problems that can be

associated with the radar target identification application:

1. Resonance extraction for target recognition.

2. Resonance extraction for target intelligence.

All that is required in the first problem is to select a pole set,

from a library of resonances for known targets, that best characterizes

an observed waveform. The observed waveform, in this case, is the time-

domain radar return from the target of interest. This problem, depending

on how it is approached, can be much simpler than the second problem. The

second problem involves the identification and characterization of a

previously unknown target. In contrast to the first problem, this problem

has no apriori infoirmation to work from.

Vie first requirement in each of these problems is that the radar
return be measured in some fashion. We discuss some preferred ways in

which the measurements should be performed next.

r4.2 THE DATA ACQUISITION PROBLEM

There are three parameters that describe the mode of measurement

of a sampled transient waveform, which are important for the effectiveness

of resonance extraction procedures. These are the period of observation,

T, the sampling rate, w, and the number of samples measured, NM. The

period of observation is simply the time duration of the waveform from

where At is the time interval between successive samples. These parameters

* are related by T 2vN /W.i:1 M
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There are four more parameters that describe a "region of feasibility"

and a "preferred locus" in w - T space shown in Figure 4.1. These parameters

are:

1. The expected period of time that the transient returns are

above the noise, T mx

2. One-half cycle of the lowest frequency of interest, T  /W LO/W,

3. The highest sampling rate available or feasible on the measurement

apparatus, , and

4. The Nyquist sampling rate for the highest frequency of interest,

"11) 2w.

If adequate measurements of the frequencies of interest are to be

-Imade, w and T must fall within the region of feasibility. For adequate

measurements to be possible at all, it is required that the region of

feasibility exist or that W > Also, the possibility of

adequate measurements requires that the maximum number of samples that
is feasible, (NM) a satisfy

w T
(NMmax~~ min min

The preferred locus defines the most desirable portions in the region

of feasibility (and outside this region as well). It should be noticed

that the locus is a broken line. The corners of the locus have

special meanings. The corner at and Tm represents the point

where holding the sampling rate constant while increasing the number of

samples ceases to provide any more information. Any further increase in

the period of observation improves nothing since the added portions of

the waveform are dominated by noise. Further information can be provided

only by increasing the sampling rate while increasing the number of samples.

Thus the corner is formed. By continuing to increase the number of samples

the second corner is reached. This corner represents the point where

further increase in the sampling rate is impossible. At this point the

only option available is to increase the period of observation (even

-though this provides little benefit) while increasing the number of samples. j
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Figure 4.1. Guidelines for choosing sampling

rate and period of observation

for resonance extraction.
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The primary objective in data acquisition is compiling the maximum

amount of information about the object of interest. This can be done best

if the largest number of samples that is feasible to measure and store on

the measurement apparatus is used. Therefore, the point on the preferred

locus for which NM - (N) defines the best values of w and T for
•|•"'," max

resonance extraction.

, We realize that there is much more :.o the data acquisition problem

than simply selecting che sampling rate and period of observation but

beyond just making accurate measurements these are the only parameters

of concern for resonance extractic.i

:4.3 TWO FACTORS EFFECTING THE ACCUFACY OF PRONY'S METHOD

Quite often in the literature the sensitivity of Prony's method to
,, noise in the data has been noted. The sources of this sensitivity can be

isolated to two factors: dense sampling and bias. The term "dense sampling"

means that the sampling rate of the waveform is much higher than the

sampling rate required to faithfully record the highest frequency of

interest or the Nyquist frequency. The dense sampling problem can be

ameliorated by proper manipulation of the data. The bias problem can also
be ameliorated and is discussed after the dense sampling problem.

4.3.1 THE DENSE SAMPLING PROBLEM

Kulp [14] has performed an excellent study of the effects of the

sampling rate on the accuracy of the estimates obtained by Prony's method.K! The effect which Kulp demonstrated can be explained by the following simple
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example. Consider the noise-free exponential waveform, w - exp(-at). Two

samples of this waveform, which are spaced At apart in time, are given by

w° M exp (-at) and wI a exp(-ct -rAt). The "resonance" for this waveform

is an s-plane pole at s - -a. The two noise corrupted samples qo and ql
which correspond to w0 and wI can be used to form an estimate, s., of the

single resonance as

-- in-q
At q0

This expression is nothing more than a first-order Prony procedure to

estimate the single resonance. It can be verified that

1 Wl

at w0

The point to be made is that the error in the estimate, sI + a, is

inversely proportional to the sampling interval

s + -a n qiOn
1 At qbwl

This same point can be made for higher orders and for the least-squares

version of Prony's method as well as all procedures that are based on Prony's

difference equation. Another quantity that displays a dependence on the

sampling interval is the condition number of the matrix 1TW (in the notation

of this report) which is used in the least-squares version of the Prony

procedure. In fact, Kulp used the condition number to derive bounds on the

error in the coefficients of Prony's difference equation. The dependence

of the condition number and the dependence of the error in this example

on sampling rate are different aspects of the same phenomenon. By this

example we have briefly explained the problem of dense sampling.
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When we are given a waveform with no other information how do we
know whether it is densely sampled or not? One possible procedure is to

take the Fourier transform of the waveform to determine its frequency

content. If most of the energy is concentrated in the lower frequencies,

the waveform is densely sampled.

One way of removing the effect of dense sampling is to use a pre-

processing technique such as the redundant-averaging scheme described in

Appendix E of this report. Another, perhaps more iirect, way is altering

the way in which the data matrix is filled. For example, if the Fourier

transform indicates that the sampling interval can be increased D times,

where D is an integer, without aliasing any of the dominant frequencies

of the signal, then an alternate form of the data matrix can be used as

before to estimate the resonances:

q q q2D "' qnD

S D+l q2D+1 qnD+l

q m qID-m q 21-m q' qnD+Ta

where m > D - 1 is required if all of the data are to be used. In order

to obtain the proper s-plane pole estimates 6t must be multiplied by D.

4.3.2 THE BIAS PROBLEM

The bias problem is very complex. There are different definitions for

the term "bias". The definition that we use is the standard definition of

bias found in basic textbooks of statistics [22]. If we denote the

estimated parameter vector as x and the true parameter vector as x then x is

said to be an unbiased estimate if
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where x is an N-dimensional random variable whose random nature is due

to the randomness of the noise in the data. The unbiased nature of any

estimate is strongly dependent on the particular procedure used to form

the estimate.

The bias problem can be observed and approached from many directions.

Eykhoff [20] describes the "asympotic bias" in terms of "correlated

residuals". The bias can be described in terms of suboptimal parameters

in the sense that they do not minimize the "true error" defined by (5)

although this approach to the problem involves factors other than just the

bias such as the choice of error criterion. The fact that equation error

of Prony's difference equation is minimized by the inhomogeneous solution

might lead one to conclude that the particular choice of equation error as

the quantity to be minimized causes the bias. On closer examination we

must disagree with this conclusion. It is not the choice of error criterion

that causes the bias but how the error criterion is minimized or, equi-

valently, how the minimizing parameter vector is constructed. Our obser-

vations of Section 2 seem to indicate that if the parameter vector is

chosen as the weakest eigenvector of the transpose product of the data

matrix, then the best estimates are obtained for the case when n - k. The

symmetrical perturbations expected in the eigenvectors with uncorrelated

noise seem to indicate that the expectation of the weakest eigenvector

is equivalent to its "true" value without noise so that the weakest

eigenvector should be unbiased. At the present time, we have no rigorous

proof that the weakest eigenvector is unbiased but we feel that it is

capable of proof.

If the noise is Gaussian-distributed and uncorrelated, using an

r iiterative least-squares technique to minimize "true error" produces an
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unbiased estimate. Unfortunately, iterative techniques are not well-

suited for our application.

For the case when n > k, Henderson' s procedure (Section 3) should

effectiv~ly avoid the problems of bias based on our current understanding

of the bias problem.

One method of treating both the bias problem and the dense sampling

problem while still using the inhomogeneous solution is to simply increase

the number of poles modeled or n. This method is described in Appendix B.

Unfortunately, this method suffers from the problem of extraneous poles.

We believe that the previous so-called problems associated with

Prony's method stem from the failure to cure both the bias problem and

the dense sampling problem. Unfortunately, curing one problem does ilot

cure the other so that it is very easy to fall into one trap, if not both.
If both of these problems are treated, we have found that Prony's method
produces excellent estimates from data with high noise levels.j

4.4 THE TARGET RECOGNITION PROBLEM

The target recognition problem can be broken into roughly four

subproblems:

1. data acquisition,

2. preprocessing of the data,

3. data transformation or characterization, and

4. classification.

We have already discussed the data acquisition problem. The pre-

processing problem might consist of choosing which portions of the wave-

form to use, filtering the waveform, decimating the waveform, or other

similar procedures. The preprocessing is intended to condition the data
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so that the data transformation procedure can be applied efficiently. The

data transformation problem can be handled in different ways. One means

of transforming the data may be to apply a resonance extraction procedure

to transform the information into a set of poles and residues. After the

data are transformed, we must decide to which class the data belongs. In

the target recognition problem the classes are defined by the pole sets

of known targets. The classification problem then consists of choosing

r which pole set, if any, in the library- of pole sets, best fits the observed

radar return.

The data transformation problem need not be treated as a resonance

extraction problem. Several other approaches to this problem were studiedVby Miller [26 ]and include:
1. Using a linear predictor from a library of linear predictors

(each predictor corresponds to a pole set of a known target)

4 to predict the nexct values of the observed waveform and then

using the mean-squared error between the observed waveform

and the predicted waveform as a measure of the match [2].

by choosing residues to minimize the mean-squared error

between the modeled waveform and the observed waveform-and then

using the mean-squared error as a measure of the match.

3. Correlating the observed waveform with a library of waveforms

and using the correlat.ion coefficient as a measure of the match.

At the present time, it appears that fitting each pole set in the

library to the observed waveform (the second approach enumerated above)

is the most reliable and easily implemented of all. The processing needed

for this particular approach is small compared to what might be needed

for the application of a resonance extraction procedure. In addition an

optimal least-squares fit to the data can always be obtained by using 1
linear, non-iterative methods. An automatic procedure using this approach

might consist of the following steps:
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1. Data acquisition.

2. Discarding portions of the waveform, that do not contain

significant amounts if energy.

3. Fitting each pole set in the library to the data.

4. Assigning probability valuesP, according to how wellI

the i pole set fits the observed data.

r th
P is the probability that the actual target is the i known targetA

in the library. The rule by which the probabilities are assigned would

most likely be developed by a training process where the target identifi-

cation i system observes variations in the measure of fit of each pole set
to a known target at various ranges and orientations. The training process

could continue even after the system becomes operational by using alternate

means of identifying the observed targets. If all the vrobabilities are

sufficiently low then the obsei-ved target is declared an "unknown target".

Further study is needed, however, before a firm conclusi.on can be

made about which approach is the best. In particular, attention should

be given to which procedures are most efficient with regard to the mode

in which they are implemented, e.g., hardware, software, parallel processing,

or sequential processing, etc. Such questions will be studi.ed further in

Phase II of the current contract.

k4.5 THE TARGET INTELLIGENCE PROBLEM

Like the recognition problem, the target intelligence problem can

be broken into subproblems: A,

1. Data acquisition

2. Preprocessing

3. Order selection

4. Construction of resonance estimatesK5. Estimating physical features of the target.

4-10



But unlike the recognition problem, there is no library of information

to work from. The data acquisition probI has already been discussed.

In the following paragraphs we describe the most probable form that an

automatic resonance extraction system will take based on our present

understanding of th,. reson:ance extraction problem.

The ultimate aim of the intelligence problem is to gain some kind of

useful information about what the unknown rarget is. For the purposes of

this report, we must assume that thiq if,-" Ation is going to be derivedi' frum the poles. Then Lhe intelligunte problem considered in this report

requires that poles be extragted from the unknown target's radar return.

This could possible be done in real time. However, most likely, a wave-

lorm would be stored and processed at a later time. Perhaps the stored

--'a-ef, rm would consist of an average of all the returns observed by the

target identification system for the unknown target. Regardless of the

manner in which the waveform is constructed, ,ome automatic procedure to

pjrform pole extraction is requireu.

The preprocessiuS step for a Prony-type resonance extraction procedure

might consist cf the fol'owing:

1. Discard portions of the waveform that do not contain significant

amounts of energy.

2. Fourier-transform 'FFT) the waveform to determine if the wave-

form is densely sampled.

3. Perform necessary adjustments to correct the dense sampling

problem if it exists.

The otder-selecAlon and resonance extimation subproblems can be

handled using the EVD of the da.a matrix, the ML procedure for selecting

the order, and Henderson's procedure for eliminating the wrtraneous

resonances. Certain unanswered questions about Henderson's procedure
and the ML procedure should be explored befcre the exact form of these

procedures is set.
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The fifth subproblem will be studied in Phase II of the present

contract. This subproblem consists of establishing a relationship between

the pole patterns and the physical characteristics oi the target. At the

present time very little is known about this subproblem.

r 4.6 SUMMARY AND CONCLUSIONS
if

Some of the more significant results of this selection are summarized

below:

i. Guidelines have been established for selecting the optimal

sampling rate and period of observation for measurement of a

transient waveform that is to be used in resonance extraction

procedures.

2. Two independent factors effecting the accuracy of estimates of

Prony-type procedures have been identified. These factors are
"dense sampling" and "bias". The effects of dense samplitig

can be alleviated by preprocessing techniques or by alternate

means of filling ti- data matrix. The bias problem can be

ameliorated by proper construction of the parameter vector

(Henderson's procedure).
3. Two distinct problems fall within the target identification

definition: target recognition and target inte'lligence. Each

of these problems must be treated in a unique fashion.

4. Tentative furms for procedures and syst&ms to handlc both the
tat6et rerrignition problem and the target intelligence problem

have been defined. Phase II of the current contract will further

refine these tentative plans.
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5.0 CONCLUSIONS AND FUTURE EFFORTS

5.1 SUMMAPY OF VOLUME I

At the end of each section, except the Introduction, a summary was

provided for the results of that section. Below we summarize the con-

clusions that will serve to determine the course of further efforts.

1. Iterative techniques are not considered for the automatic

resonance extraction application because of their inherent

problems such as lack of convergence and computational expense.

" I 2. The various noniterative estimation procedures can be inter-

preted as different methods of combining the eigenvectors of

'I the EVD of the data. There are certain "preferred" methods

i of combining the eigenvectors of which Henderson's procedure

is an example for the case n > k. The "preferred" methods

are thought to produce unbiased estimates of the coefficients

of Prony's difference equation although no proof is available.

3. The MfL procedure for selecting the model order is capable of

selecting the proper order without any knowledge of the noise

level whatsoever by simply observing the eigenvalues of the data.

4. Guidelines have been established for selecting the optimal

sampling rate and period of observation for measurement of a

transient waveform that is to be used in resonance extraction

procedures.

5. Methods for automatically sensing the problem of dense sampling

aud for allaying its effects have been proposed.

6. Tentative foi-ms foL procedures and syste-ms to handle both theK' target recogx.ition problem and che target intelligence problem

havP been df:fined.
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5.2 CURRENT STATUS OF AND UNANSWERED QUESTIONS ABOUT RESONANCE
EXTRACTION METHODS

At the present time it is possible to construct automated, efficient

procedures to:

1. Estimate the numaber of resonances present in the data, and

2. Construct estimates of the "true" resonances that ii some

sense fit the original data,

"with no knowledge of the noise given whatsoever. These procedures should

be quite tolerant to noise. The procedures are based on the eigenvalueV analysis of the data.

The maximum likelihood procedure for order selection, described in

Section 3, will perform the first step. Henderson's procedure, also described

in Section 3, will perform the second step. Although these procedures perform

adequately at this time, there are some unanswered questions, that if

addressed, could create new ways to further improve performance.

One unanswered question relates to the statistics of elgenvalues

for alternate forms of the data matrix that might be used to allay the

effects of dense sampling. If the eigenvalue statistics do change

significantly, then another model for the statistics must be developed for

the alternate forms of the data matrix and used in the ML procedure for

order selection. Another question relates to the proof that EVD allows

unbiased estimation of the coefficients of Prony's difference equation.

Such a proof is needed to place the use of EVD techniques on firmt ground. '1
Other unanswered questions about Henderson's procedure which were

posed in Section 3 are:

1. How should the weakest eigenvectors be weighted prior to the

use of this procedure?

2. What specific procedures can be applied in place of Gaussian

elimination in this procedure?
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Further study along the lines of these questions will almost certainly

yield further improvements in the procedures. Perhaps the most important

0 unanswered question is how well the methods for preprocessing, order

selection, and resonance estimation will perform with real measured data.

5.3 FUTURE EFFORTS

Under Phase II of the current contract the concepts and procedureu

developed in Phase I will be further developed and plans for specific non-

cooperative target recognition (NCTR) systems will be further refined.

QTo accomplish the above the following questions must be addressed:I

1. What is the relationship between the natural resonances and

the physical shape and dimensions of a target?

I 2. What forms can a NCTR system assume? Which form is the bes~t
under what conditions?

3. What modifications are required if the procedures are to be

F implemented in hardware?

IAnswers to these questions will be pursued by simulating possible NCTR

systems with measured data in the second phase of this contract.
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7.0 LIST OF SYMBOLS

Roman Symbols:

A - true residues

1'41

p• - estimated residues

SB a constant that determines the value

of y that maximizes f

C coefficients of a linear combination

of the eigenvectors

D - integer that specifies bow many times
the sampling interval can be increased
without aliasing any of the frequencies

d ,of interest

d M-dimensional equation error vector

d i th element of the equation error vector

particular equation error vector that
dNQE satisfies QXNQE -dNQE

F - error matrix defined as Q-W "

e measurement error of the i£h sample

th
F- transfer function of the J filter in

the genc"alized model

f - frequency function for y
fl- approximation to the frequencyr function f ''

G - (U x N)-dlmensional matrix whose rows span
the Zt autoregrt*.ssion ntillapace.

g equation error vector for the generalized model

L
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I

th
' i element of the equation error vector

4 for the generalized model

H- (V* x k' + 1)-dimensional matrix used in
Henderson's procedure.

!' Hm
H,.. estimate of the transfer function of the

single-input, single-output system which
models the scatterer

h any N-dimensional vector in the row space

, h. jhelement of h

I. - an identity matrix of appropriate dimension

',i - general index

.. general index

K constant that determines the amplitude of f

kk true number of poles I
k - eestimated number of poles

A k- estimate of the true order k

"L - cut-off normalized meau log-likellhood used inc the maximum likelihood procedure for selecting

order

L L normalized mean log-likelihood function

L - expected normalized mean log-likelihood for
' pure noise

-. index associated with the lower eigenvalues

M number of rows of Q, M - m + 1

equals M-1 (defined for convenience)

N number of columns of Q, N = n + i

7-2

'V



NM - number of samples in the measured waveform

N number of samples in the analyzed waveform

n number of poles modeled

P transpose product of Q or Q Q

P the probaility that the actual radar target
is the i known target in the target library

P - Any (N x N)-dimensional singular matrix

A
P • (N x N)-dimensional singular approximant to P

, the ith sample of the output of the jth filter

on the excitation in the generalized model

iQ (M x N)-dimensional measured data matrix

- (hx n)-dimensional version of Q or Q with the
N column removed.

Q - an alternate form of Q that is useful in treating
Al the dense-sampling problem

Q - the n-rank approximant to Q

- the Nth column of Q

th
-qi the i sample of measured response of the

linear system

- thei thsampthq - the i sample of the output of the j filter
ui~ on the response in the generalized model

r - the (M + N-l)-dimensional residual vector

r - the ith element of r

S - (M x N)-dimensional diagonal matrix whose
diagonal elements are non-negative and are
called the singular values of Q

j - true s-plane poles

s - estimated s-plane poles
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S - the (M x N)-dimensional matrix constructed
s from S by forcing the smallest singular value

to zero.

s - Laplace - transform variable

T - period of observation (length of waveform
in time)

T- expected period of time the measured transient
waveforms are above the noise

Smin- one-half cycle of the lowest frequency ofTmnof interest, equals T/w Low

t - time variable

At - time step

U - (M x M)-dimensional orthogonal matrix who e
columns consist of the eigenvectors of QQ

V - (N x N)-dimensional orthogonal matrix whose
columns are the eigenvectors of Q Q

V- the (N x N)-dimensional orthogonal matriý whose
columns consist of the eigenvectors of W W

th T
vi - the i eigjvector of Q Q corresponding to

X or the i column of V.
i

vii - t• element of V belonging to the ith row and
j column

W - (M x N)-dimensional true data matrix

w - uncorrupted version of q

w- uncorrupted value of q

X - matrix constructed from the coefficients of
Prony's difference equation

Sx - any N-dimensional parameter vector or vector
of coefficients at Prony's difference equation

X- au n-dimensional version of x or x with the
N element removed

X- solution of the inhomogeneous equation,

7--T-- 
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h.

x- scaled parameter vector constructed from x
which yields identical pole estimates J

Xl expected inhomogeneous solution

xNQE - weakest eigenvector of QTQ

[ ,,.NQE - n-dimensional vector construcad from x
by scaling so that its N thlemen s
one and then •Iiminating the N element.

x parameter vector constructed with Jain's
method

•°x any vector in the space s anned by the'
"weakest eigenvectors of Q Q

Y (N x N)-dimensional matrix whose diagonal
elements consist of samples of the random
variable v

.' 'y a random variable used to model the random
component in the eigenvalues due to noise

¼in the data

z z-transform variable

z - true z-plane poles

[: zj - est~imated z-plane poles

II
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Greek Symbols:

CL coefficients of Prony's difference equation
•. th

- scaling factor for the output of the J filter
J• on the excitation in the generalized model

ith th
- element of the i row and J column of

jadi QTQ

6 - cut-off parameter used in the likelihood ratio

criterion for selecting the order

o - 2N-dimensional parameter vector for th.!
generalized model

SAN - (N x N)-dimensional diagonal matrix whose
dia3onal elements are the eigenvalues of Q Q

AM (M x M)-dimensional diagonal matrix whose T

diagonal elements are the eigenvalues of QQ

A diagonal (N x N)-dimensional matrix constructed
NS from AN by forcing the smallest diagonal element

to zero

wA (N x N)-dimensional diagonal matrix whoseAN
diagonal matrix whosý diagonal elements are
the eigenvalues of W W

.th elgenvalue of QTQ the eigenvalues are

ordered X < 1  < ... <-

Wth TW i eigenvalue of W w, the eigenvalues are
i ordered -< X < ... < XW

expectation operator

a est adjustable parameter used to form the maximum
likelihood Tstimate of a from the lower eigen-
values of Q Q

the standard deviation of the assumed Gaussian-
distributed, zero-mean, and uncorrelated noise
corrupting the samples of the waveform
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• - the (M x 2N)-dimensional data matrix for the
generalized model

- sampling rate (angular frequency)

W... - highest frequency of interest,:, •HIGH

uLOW - lowest frequency of interest

" Wmax- Maximum feasible sampling rate•! Wmax

W.n - Nyquist frequency, equals li..

'I/

ii'-
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Miscellaneous symbols:

SAlI - denotes the euclidean norm of vector A
or matrix A

V gradient operator with respect to the
SX vector x

adjA denotes the adjoint matrix of matrix A
or the transpose of the matrix of cofactors

of A
detA denotes the determinant of matrix A I
ZnA denotes the natural logarithm of some real

or complex number A

-, exp (A) - denotes e, the base of natural logarithms,,. ') raised to the power A

A- - denotes the inverse of square matrix A

A* denotes the transpose conjugate of complex
matrix A
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